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Development of fraction number line estimation was assessed longitudinally over 5 time points between
4th and 6th grades. Although students showed positive linear growth overall, latent class growth analyses
revealed 3 distinct growth trajectory classes: Students who were highly accurate from the start and
became even more accurate (n � 154); students who started inaccurate but showed steep growth (n �
121); and students who started inaccurate and showed minimal growth (n � 197). Younger and minimal
growth students typically estimated both proper and improper fractions as being less than 1, failing to
base estimates on the relation between the numerator and denominator. Class membership was highly
predictive of performance on a statewide-standardized mathematics test as well as on a general fraction
knowledge measure at the end of 6th grade, even after controlling for mathematic-specific abilities,
domain-general cognitive abilities, and demographic variables. Multiplication fluency, classroom atten-
tion, and whole number line estimation acuity at the start of the study predicted class membership. The
findings reveal that fraction magnitude understanding is central to mathematical development.
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Reasoning about fractions is vital to our daily lives as well as for
learning more advanced mathematics and science (National Mathe-
matics Advisory Panel [NMAP], 2008; Siegler et al., 2012). However,
fractions are difficult for many children (e.g., Bailey, Hoard, Nugent,
& Geary, 2012; Ni & Zhou, 2005) and even many adults (Schneider
& Siegler, 2010; Vosniadou, Vamvakoussi, & Skopeliti, 2008). For
example, when asked to estimate the sum of 12/13 � 7/8 from the
response options 1, 2, 19, and 21, 55% of 13-year-olds, 36% of
17-year-olds (Carpenter, Corbitt, Kepner, Lindquist, & Reys, 1981),
and 15% of college students at a major university (Lewis & Hubbard,
2015) estimated the sum to be either 19 or 21. These errors suggest
that many students do not understand the relation between the numer-
ator and the denominator; in other words, they do not have a good
sense of fraction magnitudes.

In the present study, we chart the developmental course of
students’ fraction magnitude understanding, a main source of
difficulty in fraction learning (Siegler, Fazio, Bailey, & Zhou,
2013). In particular, we examine growth in fraction number line
estimation acuity between fourth and sixth grades, a critical period
for fraction learning (National Governors Association Center for
Best Practices & Council of Chief State School Officers, 2010;
National Council of Teachers of Mathematics, 2006). Examining
the development of fraction learning during this time period is
particularly important, as students who leave sixth grade with
weak fraction knowledge experience cascading mathematics dif-
ficulties through the remainder of middle school and in high school
(Siegler et al., 2012; Siegler & Pyke, 2013).

Role of Fractions in Numerical Development

Although fractions play an integral role in mathematical learn-
ing, many theories of numerical development either fail to include
fractions in their frameworks (Siegler et al., 2013; Siegler, Thomp-
son, & Schneider, 2011) or view the development of numerical
knowledge as a segmented process, in which whole number
knowledge is acquired naturally and fraction knowledge is later
acquired with great difficulty (e.g., Geary, 2004, 2006; Gelman &
Williams, 1998). Knowledge of whole number principles (e.g.,
one-to-one correspondence) is even viewed as interfering with
fraction learning (e.g., Gelman & Williams, 1998; Wynn, 1995).
Siegler and colleagues (Siegler & Lortie-Forgues, 2014; Siegler et
al., 2011) argue, however, that the development of all real numbers
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(e.g., integers and fractions) can be unified as one continuous
process.

According to the “integrated theory of numerical development,”
number learning involves understanding that all real numbers have
magnitudes that can be ordered and located on a number line
(Siegler & Lortie-Forgues, 2014). Although the time course of
different developments within the process overlap, young children
typically begin by learning nonsymbolic magnitude representa-
tions (e.g., which set of dots has more), link these nonsymbolic
understandings to symbolic representations of small whole num-
bers, gradually acquire accurate representations of larger whole
numbers, and eventually come to see that an infinite set of rational
numbers can be represented.

Fractions are a particularly important part of this process, as
they require a reorganization and deeper understanding of numer-
ical knowledge; children must see that properties of whole num-
bers do not always apply to fractions (Siegler & Lortie-Forgues,
2014; Siegler et al., 2011). Although whole number and fraction
operations share the same conceptual structures (Alibali & Sidney,
2015), those operations can have different outcomes; for example,
multiplication of whole numbers never leads to an answer smaller
than either operand and division of a whole number by a whole
number never leads to an answer larger than the number being
divided, but multiplication and division with fractions less than
one always produce such outcomes. However, one property that
unites both fractions and whole numbers is that both types of
numbers have magnitudes that can be represented on a number line
(Case & Okamoto, 1996; Siegler & Lortie-Forgues, 2014; Siegler
et al., 2011).

Indeed, there is growing evidence to suggest that understanding
magnitude is key to mathematics learning. The ability to represent
whole number magnitudes, for example, predicts fraction learning
(e.g., Hansen et al., 2015; Jordan et al., 2013; Vukovic et al.,
2014). Further, the representation of magnitudes for whole num-
bers (e.g., Booth & Siegler, 2006, 2008; Halberda, Mazzocco, &
Feigenson, 2008; Holloway & Ansari, 2008; Jordan et al., 2013;
Sasanguie, Göbel, Moll, Smets, & Reynvoet, 2013) and fractions
(Bailey et al., 2012; Siegler & Pyke, 2013; Siegler et al., 2011,
2012) both predict overall mathematics knowledge.

Development of Fraction Magnitude Understanding

Little is known about the developmental trajectory of fraction
magnitude understanding. There is some evidence that even prior
to receiving formal instruction, children already possess rudimen-
tary fraction knowledge (Mix, Levine, & Huttenlocher, 1999);
4-year-olds can complete fraction calculations using spatial pat-
terns (Mix et al., 1999), 5-year-olds can systematically divide a
whole into equal shares (Hunting & Sharpley, 1988), and 6-year-
olds can perceptually identify which of two boxes has a relatively
greater proportion of objects (Spinillo & Bryant, 1991).

During formal instruction using fraction notation, which typi-
cally occurs in U.S. schools from fourth through sixth grades,
children relate fractions to their knowledge of whole numbers.
Unfortunately, this association often results in the overgeneraliza-
tion of whole number principles, which in turn interferes with
fraction understanding (Gelman, 1991; Lamon, 1999; Ni & Zhou,
2005; Vosniadou et al., 2008). For example, when adding frac-
tions, a common error is to treat the fractional components as if

they are whole numbers, adding numerators together as well as
denominators. Connecting fraction symbols with the magnitudes
they represent, which is required in tasks such as placing fractions
on a number line, poses lasting challenges (Siegler et al., 2012).

Presumably, fraction number line acuity is sensitive to change
during the critical period between fourth and sixth grades, when
the bulk of fraction instruction occurs in U.S. schools (National
Governors Association Center for Best Practices & Council of
Chief State School Officers, 2010). Although McMullen, Laak-
konen, Hannula-Sormunen, and Lehtinen (2014) report that ele-
mentary school students’ development of fraction magnitude un-
derstanding (i.e., students’ ability to circle the larger of two
fractions) is relatively slow, the researchers only examined growth
over a 1-year period. It is possible that examination of fraction
magnitude understanding over a longer time frame is required to
capture more evidence of growth. It also seems likely that students
follow different growth trajectories in fraction magnitude under-
standing; some students’ knowledge may stay relatively flat,
whereas others’ knowledge may exhibit steeper growth in response
to fraction instruction. Identifying individual differences in devel-
opmental growth trajectories from fourth to sixth grade, the pri-
mary period of fractions instruction, can help uncover potential
problems in magnitude understanding before they become en-
trenched.

It is also important to examine whether development of fraction
magnitude estimation differs according to type of fraction, that is,
proper, improper and mixed numbers. A proper fraction’s numer-
ator is smaller than the denominator (e.g., 3/4); thus, its magnitude
is always less than one. An improper fraction has a numerator
equal to or greater than the denominator (e.g., 4/3); therefore, its
magnitude is always one or greater. A mixed number is a combi-
nation of a whole number and a proper fraction (e.g., 1 3/4). If
numerical development is the process of learning the magnitudes
of increasing ranges and types of numbers (Siegler & Lortie-
Forgues, 2014), it seems likely children do not learn to reason
about all types of fractions at the same time.

Different types of fractions may elicit different magnitude esti-
mation strategies (Bonato, Fabbri, Umiltà, & Zorzi, 2007; Sch-
neider & Siegler, 2010). Early fraction instruction usually empha-
sizes proper fractions, leading many children to view all fractions
as numbers between 0 and 1 (Vosniadou et al., 2008). Although a
simple strategy of defining fractions as “numbers between 0 and 1”
can result in reasonable estimates of proper fractions, the same
strategy works poorly for reasoning about improper fractions. For
example, a student who incorrectly views any number in the
format of a/b as being “between 0 and 1” will exhibit greater error
when estimating improper fractions (e.g., 11/4) compared to
proper fractions (e.g., 4/11). Thus, accurately representing the
magnitudes of improper fractions requires deeper understanding of
the relation between the numerator and denominator than do
proper fractions.

Relationship Between Fraction Magnitude
Understanding and Mathematics Achievement

Fraction magnitude understanding provides an underlying struc-
ture for learning a range of fraction concepts (Hecht, 1998; Siegler
et al., 2011) and procedures (Hallett, Nunes, & Bryant, 2010;
Hecht & Vagi, 2010; NMAP, 2008; Siegler et al., 2011; Vamva-
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koussi & Vosniadou, 2010). The predictive capability of fraction
magnitude estimation extends beyond fraction knowledge to in-
clude algebra knowledge (Booth & Newton, 2012; Booth, Newton,
& Twiss-Garrity, 2014; Brown & Quinn, 2007) and overall math-
ematics achievement (Bailey et al., 2012; Siegler & Pyke, 2013;
Siegler et al., 2011, 2012), even though these types of tests
typically assess fraction magnitude understanding minimally if at
all (Siegler et al., 2011). Moreover, relations among fraction
magnitude understanding, fraction arithmetic, and prealgebra/al-
gebra knowledge strengthen between sixth and eighth grades (e.g.,
Bailey et al., 2012; Siegler & Pyke, 2013). Additionally, fraction
and whole number symbolic magnitudes are more predictive than
nonsymbolic magnitude understanding (Fazio, Bailey, Thompson,
& Siegler, 2014). It has been recently argued that the relationship
between number line acuity and mathematics achievement is mu-
tually supportive, with each skill influencing the other in a bidi-
rectional fashion (Friso-van den Bos et al., 2015). That is, number
line acuity influences mathematics achievement, which in turn
influences number line acuity.

Overview of the Present Study

The present study assessed development of fraction number line
estimation acuity longitudinally, from fourth through sixth grades,
over five time points. Although we expected students on average
to grow linearly, we also predicted that empirically distinct trajec-
tory classes would be revealed by latent class growth analyses.
That is, although we expected fraction number line estimation to
be difficult for most students at the beginning of fourth grade, we
predicted subgroups of students could be identified who vary in
their subsequent growth rates. The predictive capability of ob-
served class membership was assessed for general fraction knowl-
edge and for overall mathematics achievement on a high-stakes
state test at the end of sixth grade.

Additionally, we assessed factors at the start of the study that we
hypothesized would predict growth class membership. Domain-
specific, domain-general, and demographic factors all predict
overall mathematics achievement (Geary, 2004) and fraction
knowledge in particular (Hecht & Vagi, 2010). In the present
study, we examined two domain-specific precursors—whole num-
ber line estimation (third grade) and multiplication fluency (fourth
grade). According to the integrated theory of numerical develop-
ment, children learn an increasingly wide range and type of num-
bers (Siegler & Lortie-Forgues, 2014); thus, understanding whole
number magnitudes should provide the initial structure for learning
fractions. Indeed, whole number arithmetic skill in first grade
predicts fraction arithmetic skill in middle school, even after
controlling for a range of demographic factors and general cogni-
tive variables (Bailey, Siegler, & Geary, 2014). Calculation flu-
ency also is a key component of mathematical competence
(NMAP, 2008), with multiplication skill being especially impor-
tant to fraction learning (Hansen et al., 2015). For example, it is
hard to see that 4/12 and 6/18 are equivalent without knowing that
each denominator is three times the numerator. Our model also
included a measure of classroom attention, a domain-general abil-
ity consistently linked to mathematics proficiency (e.g., Fuchs et
al., 2005, 2006) and fraction skills (Hecht & Vagi, 2010). We
assessed reading fluency as a divergent measure and included

demographic information about students’ age, gender, and family
income in our models.

No previous studies have examined the development of fraction
magnitude estimation over this critical 3-year period of fraction
instruction. If understanding of different types of fractions devel-
ops at different rates, this would suggest that children are contin-
ually expanding their repertoire of numerical magnitudes, which
would provide support for the integrated theory of numerical
development. By examining estimation patterns, we can identify
common strategies and misconceptions in fraction magnitude un-
derstanding. The findings might also provide a learning progres-
sion structure for educators regarding how and when students learn
about different types of fractions and provide information about
variability among students in these acquisitions. Characterizing
distinct growth trajectories of students for specific fraction types
and notations can also help identify students in need of interven-
tion and inform the development of targeted teaching materials.

Method

Participants

Students were drawn from nine elementary schools within two
adjacent school districts serving families of diverse socioeconomic
backgrounds. Letters describing the study, along with consent
forms, were sent to families of all children in third grade. A total
of 517 students returned consent forms to participate in this study,
of whom 36 opted out before the first assessment. Students were
followed longitudinally through third, fourth, fifth, and sixth
grades. The sample was replenished in fourth grade (n � 27 new
children) and fifth grade (n � 28 new children), resulting in a total
sample of 536 students. Attrition rates were as follows: by the end
of third grade, 23 students were no longer participating in the
study, an additional 68 by the end of fourth grade, an additional 48
by the end of fifth grade, and an additional 39 by the end of sixth
grade. Reasons for attrition included students moving to another
school district out of the study (67%), no information being pro-
vided on students’ elementary to middle school transition (23%),
and students withdrawing from the study (10%).

The sample was 47% male, 51.9% White, 40.0% Black, 5.7%
Asian/Pacific Island, and 2.5% American Indian/Alaskan Native;
17.7% of children identified their ethnicity as Hispanic. The ma-
jority of students (60.9%) participated in a school free/reduced
lunch program and thus were classified as low income. Children’s
mean age at the start of the study was 105.9 months (SD � 5.35).
The sample contained 10.6% English learners (ELs), and a sepa-
rate 10.6% of students who were receiving special education
services. Starting in fourth grade, all students were taught with
curricula that followed the content and sequence of Common Core
State Standards in mathematics (National Governors Association
Center for Best Practices & Council of Chief State School Offi-
cers, 2010).

Measures

Fraction number line estimation. Fraction magnitude under-
standing was assessed using a fraction number line estimation task
(Siegler et al., 2011). Students estimated the location of fractions
on 0–1 and 0–2 number lines. Each number line was 17.5 cm long
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and presented in the middle of the screen on a laptop computer
using DirectRT v2012 (Empirisoft, New York, NY). Fractions
were presented one at a time beneath the middle of the number
line. For each item, the cursor was set at 0; students used the arrow
keys to slide the cursor along the number line, and then pressed a
different key to indicate their response. After making their esti-
mate, a new blank number line and a new fraction were presented
and the cursor was reset to 0. Students had no time constraints,
although most responded within a few seconds per trial.

For the 0–1 number line task, students began by observing the
assessor demonstrate where 1/8 would be located, and then completed
a practice trial estimating the fraction 1/4 without feedback. The
students then estimated the locations of 1/5, 13/14, 2/13, 3/7, 5/8, 1/3,
1/2, 1/19, and 5/6 in that order. The same procedure was used on the
0–2 number line task, with the assessor modeling where fraction 1/8
and 1 1/8 would be located. For the 0–2 number line, the students
estimated the location of the fractions and mixed numbers 1/3, 7/4,
12/13, 1 11/12, 3/2, 5/6, 5/5, 1/2, 7/6, 1 2/4, 1, 3/8, 1 5/8, 2/3, 1 1/5,
7/9, 1/19, 1 5/6, and 4/3 in that order. Thus, students estimated the
locations of 28 fractions and mixed numbers.

Participants’ percent absolute error (PAE) was calculated by divid-
ing the absolute difference between the estimated and actual magni-
tudes by the numerical range of the number line (1 or 2), and then
multiplying by 100 for each estimate. For example, if a child was
asked to locate 7/4 on a 0–2 line and marked the location correspond-
ing to 5/4 the PAE would be 25% [|(1.75 – 1.25)|/2 � 100]. Each
student was assigned a single score by taking his or her mean PAE.
Internal reliability on the 0–1 and 0–2 number line task was greater
than .87 at all time-points in the study.

Whole number line estimation. Whole number estimation
was assessed using a whole number line estimation task (Siegler &
Opfer, 2003). A 25-cm line with 0 at the left end and 1,000 at the
right was used. Students first indicated the locations of 0 and 1,000
on the number line and then estimated the location of 150, with
feedback regarding its correct location. No feedback was given
during the test trials. Task items in the order of presentation were:
56, 606, 179, 122, 34, 78, 150, 938, 100, 163, 754, 5, 725, 18, 246,
722, 818, 738, 366, 2, 486, and 147. Paper and pencil were used for
problem presentation and responses. The score on the task was the
mean PAE, which was calculated using the same procedure as the
fraction number line estimates. Internal reliability between all
whole number estimates was .89 for the present sample.

Multiplication fluency. The Multiplication Fluency subtest
of the Wechsler Individual Achievement Test (WIAT; The Psy-
chological Corporation, 1992) was used. The multiplication flu-
ency subtest has a reliability coefficient of .90 in fourth grade.
Students were given 1 minute to solve as many of 40 multiplica-
tion problems as they could. The WIAT is a paper-and-pencil-
based task. All items had multiplicands between zero and 10
inclusive. Students earned one point for each correct response.

Reading fluency. Reading fluency was assessed using the
Sight Word Efficiency subtest of the Test of Word Reading Effi-
ciency (TOWRE; Torgesen, Wagner, & Rashotte, 1999). The
TOWRE has a reliability coefficient exceeding .90 in fourth grade.
Students were given 45 s to read aloud as many words as they
could from a list of 104 written words. Students earned one point
for every correctly read word.

Attention. Classroom attentiveness was assessed using the
Inattentive Behavior subscale of the SWAN Rating Scale (Swan-

son et al., 2006). This instrument’s nine items are based on the
criteria for attention-deficit/hyperactivity disorder for inattention
of the Diagnostic and Statistical Manual of Mental Disorders (4th
ed.; American Psychiatric Association, 1994). In its present use,
teachers rated children’s attention during their fourth-grade math-
ematics classes on a scale of 1 (below average) to 7 (above
average) for each item. Thus, raw scores could range between 9 (a
score of 1 on each item) and 63 (a score of 7 on each item). The
Inattentive Behavior subscale had high internal consistency for this
sample (� � .97).

General fraction knowledge. General fraction knowledge
was assessed using a combined measure of concepts and proce-
dures. Fraction concepts were evaluated using three items that
required students to shade sections of a polygon or set of polygons
corresponding to a given fraction (Hecht, Close, & Santisi, 2003),
and 25 released fraction concepts items from the National Assess-
ment of Educational Progress (NAEPs; U.S. Department of Edu-
cation, 2007, 2009). Thus it included 28 items. Fraction procedures
were assessed using 26 fraction computation items adapted from
Hecht (1998). Students earned one point for each correct answer.
Test items had an internal reliability of .92 in the spring of sixth
grade.

Mathematics achievement. The DCAS is a statewide, stan-
dardized test that was given to all students in the participating
school districts in sixth grade (American Institutes for Research,
2012). It is a computer-based multiple-choice test that automati-
cally adjusts item difficulty based on student performance. Internal
consistency for the mathematics section of the DCAS for sixth
grade exceeds .88, and is aligned with the Common Core State
Standards, providing strong construct validity. Students are clas-
sified with scaled scores of 1 (well below standards), 2 (below
standards), 3 (meets standards), or 4 (advanced).

Procedure

These data come from a larger longitudinal study on students’
mathematical development. Each student was assessed on fraction
number line estimation at five separate time points: winter and
spring of fourth grade; fall and spring of fifth grade; and winter of
sixth grade. Whole number line estimation was assessed in the
winter of third grade and multiplication fluency (WIAT), reading
fluency (TOWRE), and attentive behavior (SWAN) were assessed
in the winter of fourth grade. The fraction knowledge and math-
ematics state test (DCAS) was administered the spring of sixth
grade.

The DCAS was administered by the school district following
published guidelines. Trained assessors from our research team
administered the remaining tasks and read aloud each set of
instructions. All measures were administered individually in a
quiet setting, with the exception of the multiplication fact fluency
and fraction knowledge tests, which were given in a whole group
classroom setting.

Age of entry into third grade served as the age variable. Binary
variables of gender and income status, respectively, were coded as
1 (female; participated in school’s free/reduced price lunch pro-
gram) or 0 (male; did not participate in the school’s free/reduced
price lunch program).
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Results

Little’s (1988) Missing Completely at Random (MCAR) test
results for all measures used in the present study were significant
(�2 � 347.977; df � 273; p � .001), indicating data were not
missing completely at random. Students who were missing more
data (typically due to moving outside participating schools) were
approximately 70% low income, which is significantly higher than
the sample as a whole (�2 � 6.328; df � 1; p � .012). Mobility
patterns similar to these are common for low-income students
(Jordan, Kaplan, Ramineni, & Locuniak, 2009; Smith, Fien, &
Paine, 2008). No significant differences in the demographics of the
students were observed between students who took one or two (out
of five) of the fraction number line estimation assessments (n �
130) and those students who took three, four or five of the fraction
number line estimation assessments (n � 406). Additionally, once
students who did not complete any fraction number line estimation
assessments were removed from the analysis, the remaining data
was missing completely at random (�2 � 252.88; df � 223; p �
.083).

Table 1 shows the means and standard deviations on all mea-
sures. For ease of interpretation, grade-based percentile scores are
presented for standardized measures. For most analyses, raw
scores were used; the one exception was the multinomial regres-
sion analyses, in which all nonbinary predictor variables were
standardized for ease of interpretation. Correlations among all
variables are shown in Table 2.

Growth curve and latent class growth analyses both utilize
maximum likelihood estimation. In practical terms, maximum
likelihood estimation allows researchers to use all data that was
collected, but does not impute missing data. Therefore, any par-
ticipant who took the fraction number line estimation task at least
once during the study period was eligible to be included in these
analyses. List-wise deletion was used for subjects (n � 64) who
were missing fraction number line estimation scores at all time
points (see analysis above regarding attrition). By using analyses
that can handle missing data, the majority of the sample could be
conserved, leading to less loss of statistical power. Most children
(n � 406) took the fraction number line estimation task at least
three times.

The results of the baseline growth curve model are shown in
Table 3. The fraction number line estimation score at the end of
sixth grade was significantly different from zero, and as can be
seen from the slope coefficients, the linear decrease in fraction
number line estimation PAE was statistically significant as well.
This suggests that students become more accurate at estimating the
location of fractions on a number line from fourth to sixth grade.

A goal of this study was to examine underlying latent classes of
growth in fraction number line estimation. Again, the intercept was
set at sixth grade. Latent class growth analysis uncovered three
distinct growth classes for fraction estimation (see Figure 1).
Students in Class 1 (n � 154) are characterized by a high level of
accuracy beginning in fourth grade that continued through sixth
grade (starts accurate; ends accurate). Students in Class 3 (n �
197) exhibited a low level of accuracy from fourth through sixth
grade (starts inaccurate; ends inaccurate). Students in Class 2 (n �
121) were inaccurate in fourth grade, similar to those in Class 3,
but their estimation accuracy in sixth grade was comparable to

those in Class 1 (starts inaccurate; ends accurate). Table 4 shows
the intercept and slope for each class.

Despite the large gains achieved by children in Class 2, all latent
class groups remained significantly different from each other on
fraction magnitude estimation accuracy at the end of sixth grade,
F(2, 359) � 559.69, p � .001. Sixth graders in Class 1 (starts
accurate, ends accurate) outperformed those in Class 2 (starts
inaccurate; ends accurate; mean difference � �4.55, SE � .64,
t(141.02) � �10.96) and Class 3 (starts inaccurate, ends inaccu-
rate; mean difference � �18.6, SE � .58, t(170.28) � �32.31).
Sixth graders in Class 2, in turn, outperformed peers in Class 3
(mean difference � �14.06, SE � .67, t(233.00) � �21.14).

A multinomial logistic regression was conducted to examine the
odds of Class assignment (1, 2, or 3) based on initial characteristics
and skills. See Table 5 for a summary of odds ratios. Class 2 was
set as the comparison class, because it was of particular interest to
distinguish between students in Class 2 and Class 3 in order to
identify factors that led some students to show more improvement
than others. Results from the multinomial regression analysis
indicated that the model provided a statistically significant im-
provement over the constant-only model, (�2 � 200.43, df � 14,

Table 1
Means and Standard Deviations of Measures

Measures M (SD) n

Predictor measures
Whole number line estimation (PAE) 10.94 (6.72) 463
Multiplication fluency (WIAT Multiplication;

percentile)
61.02 (27.20) 423

Attention (SWAN; 63) 38.08 (12.76) 415
Reading fluency (TOWRE; percentile) 60.45 (22.37) 421

Fraction number line estimation outcome measures
Winter 4th grade

0–1 (PAE) 25.79 (11.20) 421
0–2 (PAE) 23.86 (8.13) 421
0–1 and 0–2 combined (PAE) 24.45 (8.51) 421

Spring 4th grade
0–1 (PAE) 20.33 (11.38) 418
0–2 (PAE) 18.64 (9.00) 418
0–1 and 0–2 combined (PAE) 19.16 (9.33) 418

Fall 5th grade
0–1 (PAE) 19.87 (11.97) 409
0–2 (PAE) 18.51 (9.72) 409
0–1 and 0–2 combined (PAE) 19.16 (10.46) 409

Spring 5th grade
0–1 (PAE) 16.65 (12.16) 401
0–2 (PAE) 15.33 (9.92) 401
0–1 and 0–2 combined (PAE) 15.75 (10.26) 401

Winter 6th grade
0–1 (PAE) 13.42 (11.08) 362
0–2 (PAE) 12.74 (9.30) 362
0–1 and 0–2 combined (PAE) 12.96 (9.52) 362

Fraction knowledge (54) 32.65 (9.36) 356
Mathematics achievement (DCAS; 1–5 scale) 2.78 (1.02) 342

Note. All scores are raw scores unless indicated otherwise. Number in
parentheses indicates total number of items. Number line estimation is
coded as percent absolute error; therefore, higher scores indicate poorer
performance. PAE � participants’ percent absolute error; WIAT �
Wechsler Individual Achievement Test; SWAN � Strengths and Weak-
nesses of ADHD symptoms and Normal Behavior Rating Scale;
TOWRE � Test of Word Reading Efficiency; DCAS � Delaware Com-
prehensive Assessment System.
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p � .001). Nonsignificant Pearson and deviance statistics to assess
goodness-of-fit showed good model fit with the data (p 	 .05).

The Wald statistic is used to evaluate the unique contribution of
each coefficient to the model. Here, the Wald test identified four
predictors: age, multiplication fluency, attention, and whole num-
ber line estimation. Students who were one standard deviation
older than average at the start of third grade were 1.4 times more
likely to fall into Class 3 (starts inaccurate; ends inaccurate) than
Class 2 (starts inaccurate; ends accurate). Better-than-average mul-
tiplication fact fluency, attention, and whole number line estimation
emerged as protective factors. Students with multiplication fluency
scores one standard deviation above average were approximately 35%
less likely to be in Class 3 than Class 2. Students with attention ratings
one standard deviation above average were 1.6 times more likely to be
in Class 1 (starts accurate; more ends accurate) than Class 2. Finally,
students with whole number line estimation scores one standard
deviation lower (i.e., more accurate) than average were 70% more
likely to be in Class 1 than Class 2. Students with whole number line
estimation scores one standard deviation higher (i.e., less accurate)
than average were approximately twice as likely to be in Class 3
compared to Class 2.

Estimates for fractions on the 0–2 number line were assessed by
comparing the mean estimate to actual magnitudes for each whole
number, proper fraction, improper fraction and mixed number
(from smallest to largest) for each latent class (1, 2, and 3) and
grade (spring of fourth and fifth, and winter of sixth). Estimates on
the 0–1 number line are not analyzed here because, due to the
nature of the task, there were no improper fractions or mixed
numbers. Overall, proper fractions and mixed numbers were easier
than improper fractions for most children (see Figure 2). While
fourth graders in class 1 estimated accurately overall, they were
more accurate on proper fractions and mixed numbers than on
improper fractions; they tended to estimate the location of im-
proper fractions between the location of one half and one on the
line. By fifth grade, after fraction instruction, children in Class 1
were extremely accurate. Peers in Classes 2 and 3, on the other
hand, had difficulty with estimates of all three types of fractions in
fourth grade; they estimated proper and improper fractions equi-
distant between the locations of 0 and 1, and they estimated the
locations of mixed numbers near 1 on the number line. In fifth and
sixth grade, the gap in estimation accuracy between children in
Class 2 and Class 3 widened. Children in Class 3 showed little
change across the grades, but the estimation accuracy of children
in Class 2 increased and approached that of children in Class 1.

Fraction number line estimation class membership was associ-
ated with general fraction knowledge at the end of sixth grade, F(2,
398) � 154.46, p � .001, even after controlling for age, gender,
income, attentive behavior, whole number line estimation, multi-
plication fluency, and reading fluency, F(2, 274) � 50.94, p �
.000. Students in Class 1 (starts accurate; ends more accurate)
scored higher on the assessment of general fraction knowledge
compared to those in Class 2 (starts inaccurate; ends accurate;
t(239.81) � 9.35, p � .001, d � 1.21) and Class 3 (starts inaccu-
rate; ends inaccurate; t(286.18) � 16.59, p � .001, d � 1.96).

Table 2
Correlations Among All Variables

Variables 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13

1. Income —
2. Female �.036 —
3. Age .140�� �.032 —
4. Whole NLE .171�� .195�� .159�� —
5. Multiplication

fluency �.212�� �.054 �.220�� �.420�� —
6. Attention �.167�� .198�� �.123� �.309�� .438�� —
7. Reading fluency �.205�� .049 �.252�� �.265�� .455�� .354�� —
8. Fraction NLE

(Winter 4th grade) .261�� .030 .187�� .464�� �.422�� �.428�� �.260�� —
9. Fraction NLE

(Spring 4th grade) .258�� .123� .239�� .469�� �.426�� �.395�� �.279�� .714�� —
10. Fraction NLE (Fall

5th grade) .264�� .122� .206�� .451�� �.471�� �.387�� �.304�� .674�� .861�� —
11. Fraction NLE

(Spring gth Grade) .197�� .159�� .255�� .500�� �.462�� �.423�� �.294�� .592�� .792�� .808�� —
12. Fraction NLE

(Winter 6th grade) .228�� .079 .256�� .502�� �.473�� �.423�� �.263�� .575�� .699�� .697�� .833�� —
13. Fraction knowledge

(Spring 6th grade)
�.198�� .050 �.245�� �.477�� .583�� .557�� .333�� �.608�� �.643�� �.634�� �.638�� �.649�� —

Note. NLE � number line estimation. Number line estimation is coded as percent absolute error; therefore, higher scores indicate poorer performance.
� p � .05. �� p � .01.

Table 3
Latent Growth Curve Model for Fraction Number Line
Estimation (0–1 and 0–2)

Estimate SE

Intercept 12.891��� .478
Slope �.376��� .018
Var (intercept) 86.857��� 6.880
Var (slope) .056��� .010

Note. Var () represents the variance of parameters in parentheses.
��� p � .001.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

751FRACTION MAGNITUDE GROWTH TRAJECTORIES



Children in Class 2, in turn, showed greater fraction knowledge
than those in Class 3, t(260.64) � 8.16, p � .001, d � 1.01.

Finally, fraction number line estimation class membership was
strongly associated with the sixth grade DCAS mathematics pro-
ficiency group levels (�2 � 201.78, p � .001, Cramer’s V � .543;
see Table 5). This relationship held when we controlled for age,
gender, income, attentive behavior, whole number line estimation,
multiplication fluency, and reading fluency using an ordinal logis-
tic regression (�2 � 236.38, p � .001). Over half (66.4%) of
students in Class 1 scored as “advanced” on the DCAS. Over half
(63.4%) of students in Class 2 received a rating of “meets stan-
dards” on the DCAS. Students in Class 3 were evenly distributed
across “well below standards” (35.3%), “below standards”
(31.7%), and “meets standards” (31.7%).

Discussion

Although numerical magnitude representations are central to
mathematical learning, no previous research had examined longi-
tudinal growth in fraction number line estimation during the de-
velopmental period when fractions are emphasized in most U.S.
schools. Over the course of the present study, students gradually
increased their estimation accuracy, as measured by the percent
absolute error (PAE) on 0–1 and 0–2 number lines. The findings
show that fraction number line estimation acuity changes greatly in
late elementary and early middle school. The data extend down-

ward previous cross-sectional research, which showed that eighth
graders are more accurate than sixth graders in fraction number
line estimation (Siegler et al., 2011).

The group data, however, do not tell the complete story. We
uncovered three empirically distinct growth trajectory classes in
fraction magnitude understandings: students who started with ac-
curate performance and became even more accurate (Class 1);
students who started with inaccurate performance but exhibited
relatively steep growth (Class 2); and students who started with
inaccurate performance and showed little growth (Class 3). Strik-
ingly, about 42% of students left sixth grade with minimal under-
standing of fraction magnitudes. Another 26% of students seemed
to benefit a great deal from fractions instruction in late elementary
and early middle school but still were not as accurate as roughly
one third of the students who started the study with considerable
strength in estimating fraction magnitudes.

Importantly, growth trajectory class predicted performance level
on a high-stakes general mathematics test at the end of sixth grade,
even after controlling for other factors that may contribute to
overall mathematics achievement. Although 95% of Class 1 and
83% of Class 2 students met or exceeded state standards in
mathematics, only 33% of Class 3 students did. Moreover, students
in Classes 1 and 2 had a distinct advantage over those in Class 3
on a sixth-grade test of fraction knowledge that included
curriculum-based concepts and procedures. Identification of these
growth trajectory classes between fourth and sixth grade helps
explain the large gap between low-achieving and high-achieving
students in fraction knowledge and overall mathematics achieve-
ment in eighth grade (Siegler & Pyke, 2013).

Analysis by fraction type showed that estimation skill with
improper fractions is less accurate and develops later than skill
with proper fractions and mixed numbers. This finding supports
the integrated theory of numerical development, which posits that
numerical development involves gradually widening the range and
type of number understood as magnitudes that can be accurately

Table 4
Intercept and Slope of Each Latent Class

Intercept Slope

Class 1 (starts accurate, ends accurate) 3.019��� �.310���

Class 2 (starts inaccurate, ends accurate) 8.385��� �.714���

Class 3 (starts inaccurate, ends inaccurate) 23.662��� �.211���

��� p � .001.

Figure 1. Growth trajectories in fraction number line estimation. Note. PAE � mean percent absolute error.
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located on a number line (Siegler & Lortie-Forgues, 2014). Pre-
vious studies have documented that whole number magnitude
extends from relatively small whole numbers to increasingly larger
whole numbers (Booth & Siegler, 2006; Siegler & Opfer, 2003).
Siegler and Lortie-Forgues (2014) suggest that children first learn
fractions between 0 and 1, and then learn fractions greater than 1
(Siegler & Lortie-Forgues, 2014). For example, while sixth and
eighth graders do not differ in estimation accuracy with fractions
on a 0–1 number line, eighth graders are more accurate on a 0–5
number line (Siegler et al., 2011). However, Siegler and colleagues
did not differentiate between estimates of improper fractions and
mixed numbers. Our data suggest that less accurate estimation of
improper fractions may be the driving force behind the observed
difference between estimation accuracy with rational numbers
above and below 1.

While the integrated theory of numerical development suggests
whole number development involves understanding increasingly
larger magnitudes (Siegler & Lortie-Forgues, 2014), our data
suggest that fraction learning involves understanding the proper-
ties of different types of fractions as well as their magnitudes.
Magnitude estimation of improper fractions requires students to
attend to the relationship between the numerator and the denom-
inator, including the order of the numerals (i.e., a/b vs. b/a). Fourth
graders and low-growth students in fifth and sixth grades consis-
tently estimated both proper fractions and improper fractions as
falling between 0 and 1, and estimated mixed numbers as just more

than 1. This observed estimation pattern suggests that younger
students and older ones with mathematics difficulties may simply
define fractions as “really small” or “less than 1.” Such an ap-
proach would never be successful with estimating improper frac-
tion magnitude on a number line.

This interpretation supports Vosniadou et al.’s (2008) assertion
that the emphasis on proper fractions in early fraction instruction
leads children to view all fractions (a/b) as numbers between 0 and
1. This issue raises the question of whether students should be
taught fractions on number lines greater than 1 earlier in develop-
ment. Number lines from 0–2, for example, encourage reasoning
about the multiplicative relation among proper fractions, improper
fractions, and mixed numbers, a key goal of the CCSS in mathe-
matics (National Governors Association Center for Best Practices
& Council of Chief State School Officers, 2010).

That fourth graders and low-growth students estimated both
proper and improper fractions between 0 and 1 suggests these
students are not engaging effectively in more strategic processes,
most likely because of their limited understanding of the relation
between the numerator and denominator and weaknesses in mul-
tiplicative reasoning. Siegler et al. (2011) found that sixth and
eighth graders reported a variety of adaptive strategies on a frac-
tion number line task. For example, one strategy was to divide the
number line in half or in the case of lines larger than 1, into whole
numbers. Other strategies include transforming fractions by round-
ing (e.g., 6/10 is a little more than 1/2) simplifying (7/4 is 1 3/4

Table 5
Odds of Class Assignment Compared to Class 2 (Starts Inaccurate; Ends Accurate)

Class 3 (starts inaccurate; ends inaccurate) Class 1 (starts accurate; ends accurate)

Predictor Odds ratio Predictor Odds ratio

Low income 1.420 Low income .607
Female 1.135 Female .614
Age 1.412� Age .920
Whole number line estimation 2.034��� Whole number line estimation .352���

Multiplication fluency .647� Multiplication fluency 1.342
Attention .825 Attention 1.565��

Reading fluency 1.296 Reading fluency 1.362

Note. All nonbinary predictor variables standardized to improve interpretation. N � 382.
� p � .05. �� p � .01. ��� p � .001.

Table 6
Fraction Number Line Estimation Class Membership in Relation to DCAS Scores

DCAS proficiency level groups assessed Spring 2014

Total
1

(well below standards)
2

(below standards)
3

(meets standard)
4

(advanced)

Fraction number line
estimation class

Class 1 (Starts accurate;
ends more accurate)

2 4 31 73 110

Class 2 (Starts
inaccurate; ends
accurate)

3 13 59 18 93

Class 3 (Starts
inaccurate; ends
inaccurate)

49 44 44 2 139

Total 54 61 134 93 342

Note. Only children who were assigned to a latent growth trajectory class and had state test data available in sixth grade (N � 342) were included in this
analysis. DCAS � Delaware Comprehensive Assessment System
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which is close to 2), and translating the fraction into a different
form (e.g., 3/5 is about 60%). While the high-achieving fourth
graders in our sample might be engaging in conscious strategic
processes, the majority of students are not, as seen by their inac-
curate estimates. Low-growth children, in particular, do not learn
how to make use of these strategies over time.

We also investigated the extent to which a range of processes
and skills predicted fraction magnitude latent class membership.
Attentive behavior, accurate whole number line estimation, mul-
tiplication fluency, and age (favoring younger students) emerged
as unique predictors of fraction growth. Reading fluency did not
predict fraction growth trajectory class, suggesting that general
fluency is not uniquely important for fraction development. How-
ever, it should be noted that attentive behavior, multiplication
fluency, whole number line estimation, and age all were moder-
ately correlated with reading fluency. Thus, to some extent, these
skills may support academic achievement more broadly.

Students were nearly 1.6 times more likely to be in Class 1
(starts accurate; ends more accurate) versus Class 2 (starts inac-
curate; ends accurate) if their teachers rated them as having above-
average attention. Attentive behavior allows students to stay on
task and to acquire relevant knowledge and skills in their mathe-
matics classrooms. Attentive behavior also likely facilitates strat-
egy application on number line tasks; in order to understand the

magnitude of a given fraction, students need to attend to the
numerator and denominator simultaneously and to inhibit ineffec-
tive whole number strategies (Bonato et al., 2007; Meert, Grégoire,
& Noël, 2009). Namkung and Fuchs (2016), however, reported no
relation between classroom attention and fraction number line
estimation skill in low-achieving fourth graders (below the 35th
percentile on a mathematics achievement test), although they did
not examine growth; the correlation between attention and fraction
number line estimation may be depressed somewhat in a sample of
achievers in the bottom third of the continuum. In our sample,
which included a range of achievement levels, the correlation
between attention and fraction number line estimation was mod-
erately strong. Our findings also suggest that adaptive strategy
application on the fraction number line estimation task (as indi-
cated by increased accuracy), which requires attentional control
and inhibitory processes, does not develop until later for most
children, if at all, especially those in the low-growth group.

Students who estimated whole numbers accurately in third grade
were 70% more likely to be in Class 1 than in Class 2. Likewise,
students with inaccurate whole number line estimation skills were
approximately twice as likely to be in the low-growth Class 3 than
in the steep-growth Class 2. It is not surprising that students who
enter fourth grade with strong whole number estimation skills have
an advantage when they encounter fractions (Bailey et al., 2014;

Figure 2. Scatterplot of estimated versus actual magnitudes for each class by grade on the 0–2 fraction number
line estimation task. Note. Error bars represent standard deviation. Fractions and mixed numbers from smallest
to largest were: 1/19, 1/3, 3/8, 1/2, 2/3, 7/9, 5/6, 12/13, [5/5, 1]�, 7/6, 1 1/5, 4/3, [3/2, 1 2/4]�, 7/4,
1 5/8, 1 5/6, 1 11/12. �Brackets indicate fraction equivalence.
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Vukovic et al., 2014). Siegler and Lortie-Forgues (2014) assert that
the number line unifies numeral development for all real numbers.
Students may use similar strategies on both tasks (e.g., dividing the
line into parts), although whole number line estimation skill ap-
pears to be a more automatic and better learned skill (Siegler &
Opfer, 2003).

Students with higher than average multiplication fact fluency at
the start of the study were approximately 35% less likely to fall
into low-growth Class 3 than steeper-growth Class 2. Fast and
accurate multiplication skill facilitates reasoning about fractions
(Hecht et al., 2003; Seethaler, Fuchs, Star, & Bryant, 2011). For
example, students must quickly see multiplicative relations be-
tween equivalent fractions (1/4 is the same as 2/8) as well as
between improper fractions and mixed numbers (6/4 is the same as
6 � 1/4, or 1 1/2).

Finally, older students were about one and a half times more
likely to fall in low-growth Class 3 compared to the steeper-growth
Class 2. This negative relation is likely a result of students starting
school later than usual or being held back because of learning or
developmental delays.

Conclusions and Future Directions

As early as fourth grade, there are large individual differences in
students’ fraction magnitude understanding, as revealed by perfor-
mance on a fraction number line estimation task. Most interesting
are the students tracked in this study who started out with low
fraction magnitude understanding but showed relatively steep
growth between fourth and sixth grade. Do these students learn in
the same way as students who initially have a strong sense of
fraction magnitude but just at a slower pace? Indeed, steep-growth
students’ estimation patterns in fifth and sixth grade reflect the
high-performing students’ estimation patterns in fourth and fifth
grade, respectively. Children in the steep-growth group seem to
benefit from the mathematics curriculum in school, although future
research is needed to align the emergence of specific fraction
competencies with instructional approaches.

Being able to reason about whole number magnitude appears to
support fraction learning. Class 1 (start accurate, ends accurate) is
the most accurate whole number line estimation acuity, Class 2
(starts inaccurate, ends accurate) has the next highest accuracy,
and Class 3 (starts inaccurate, ends inaccurate) has the lowest
accuracy. Having a strong representation of whole numbers may
support learning fraction magnitudes because: having a precise
mental number line for whole number magnitudes may provide
structure for learners to “fill in the empty spaces” in between
whole numbers, whole numbers and fractions may both require the
same encoding relative to other numbers (e.g., 75 on a 0–100
number line and 3/4 on a 0–1 number line, both represent 75% of
either scale), and/or whole numbers and fractions may be linked
through intermediary decimals (Bailey et al., 2014). Additionally,
Class 1 and Class 2 both have stronger multiplication fluency
compared with Class 3, suggesting the importance of developing
this skill in all learners. Multiplication fluency may be important in
understanding fraction magnitude, because the numerator and de-
nominator in a given fraction can be expressed as a multiplicative
relationship: identifying that 4/8 and 5/10 are equivalent fractions,
for example, without knowing that each denominator is two times
larger than the numerator.

Children with early fraction estimation acuity are likely to excel
in mathematics throughout late elementary and early middle
school. Students who cannot accurately place fractions on a num-
ber line, especially on the 0–2 line, by about fifth grade will
probably continue to struggle in mathematics, at least without
instructional intervention. Fraction number line estimation acuity
reflects deepening knowledge of the relation between the numer-
ator and denominator as well as knowledge of fraction equiva-
lence. These understandings are enhanced by whole number sense,
computational fluency, and strong attention.

Fraction sense in struggling learners appears to be malleable,
and interventions centered on a number line can sharply boost
mathematics performance (e.g., Fuchs et al., 2013; Saxe et al.,
2007). The present research suggests that targeting improper frac-
tions and their relation to proper fractions and mixed numbers on
number lines greater than 1 would be especially beneficial. Im-
proving understanding of multiplicative relations and their con-
nection to fraction magnitudes also is likely to increase learning. In
addition, students should be encouraged to focus their attention on
both end points of the number line and to develop strategies for
representing different fractions relative to those endpoints (e.g., the
closer the numerator is to the denominator, the closer the fraction
is to 1, so on a 0–1 line, numerators that are close to denominators
indicates locations near the right end; when the numerator is larger
than the denominator, the number is always greater than 1; differ-
ent fractions can have the same place on the line if the relation
between numerator and denominator is equivalent, etc.). Interven-
tions using such approaches may be particularly beneficial early in
fraction instruction so that fraction difficulties do not continue to
cascade.
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